

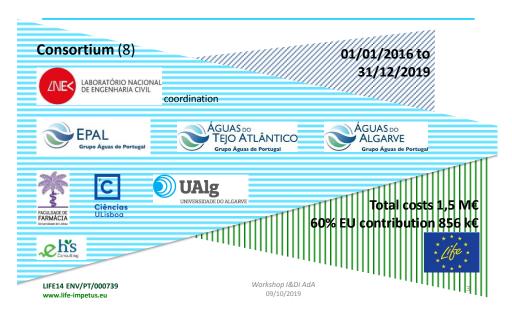
Monitorização e controlo de fármacos em ETAR

Maria João Rosa, António Martins, Alexandra Cravo M. Campinas, C. Silva, R. Ribeiro, R. Viegas, R. Coelho et al.

Workshop I&Di AdA, UALG - Campus da Penha, Faro 9 outubro 2019

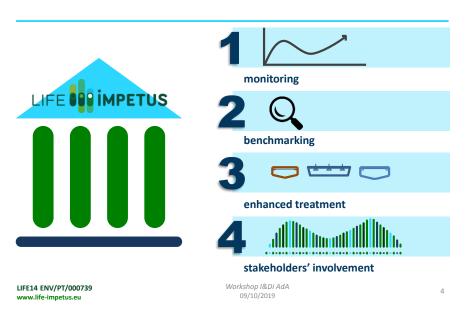
LIFE Impetus rationale

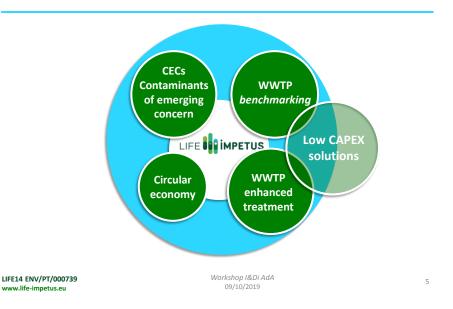
Improving current barriers for controlling pharmaceutical compounds in urban wastewater treatment plants

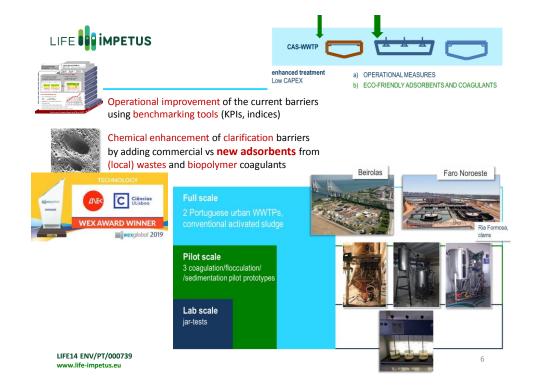


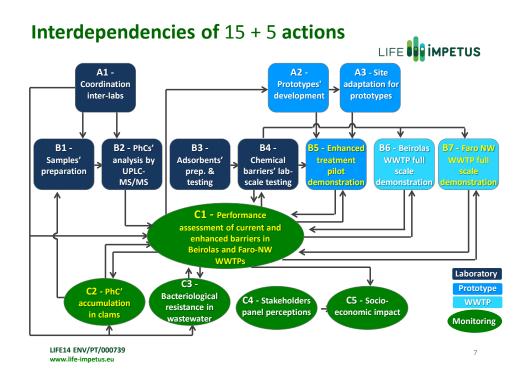
LIFE14 ENV/PT/000739 www.life-impetus.eu

Workshop I&Di AdA


About the project


LIFE Impetus research pillars





LIFE Impetus context in 2014

António Martins

O projeto LIFE IMPETUS na Águas do Algarve, SA - Faro NW WWTP

FARO NOROESTE Subsystem

- 1 WWTP
- 2 WW Pumping stations
- 24,31 km sewer system
- Hospital Particular do Algarve Gambelas (180 beds)

Faro NW WWTP

Why Faro NW WWTP?

95% of the p.e. is served by activated sludge

systems

- Discharge of treated effluent into sensitive zone (shellfish activity)
- WWTP with the most restrictive discharge limit regarding microbiological parameters
- Potential for water reuse

Discharge limits:

 $25 \ \text{mg/L BOD}_5$ $125 \ \text{mg/L COD}$ $35 \ \text{mg/L TSS}$ $300 \ \text{CFU/} 100 \ \text{mL Fecal coliforms}$

LIFE14 ENV/PT/000739 www.life-impetus.eu

Workshop I&Di AdA 09/10/2019

	Operational Data 2018	Project data	
Population equivalente (p.e.)	25.101	44.530	
Daily flowrate (m³/day)	4.700	13.221	
Organic load (kg BOD ₅ /d)	1.506	2.696	
Treatment capacity (%) (one treatment line)	112	- 1	
Sludge Production (tons w.b.)	2.630	-///	
Specific Sludge Production (kg/m³)	1,5	- 7	
Extended aeration activated sludge	system		

selector + oxidation ditch, UV disinfection:

> 14 h HRT; 8-14 days SRT; 4 g/L MLSS

LIFE14 ENV/PT/000739 www.life-impetus.eu

Workshop I&Di AdA 09/10/2019

11

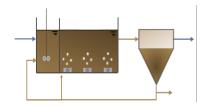
Faro NW WWTP

AdA to-do in articulation with LNEC

- Site adaptation for prototype FNW PT2 installation
- Provide technical assistance to FNW PT2
- Wastewater and sludge sampling at the WWTP and FNW PT2
- Performing analyzes in the AdA's Lab to the regular analytical parameters foreseen in the project
- Site adaptation for full scale trials
- Participation in full-scale PAC trials
- Change of operating parameters of treatment process control
- Operational data collection for WWTP performance assessment
- Execution of energy consumption measurement campaigns at the WWTP

LIFE14 ENV/PT/000739 www.life-impetus.eu

Workshop I&Di AdA 09/10/2019



selector + oxidation ditch

Variable control in the biological treatment process:

- Aeration: DO, redox potential
- SRT: excess sludge flow

Workshop I&Di AdA 09/10/2019

15

Faro NW WWTP energy campaigns LIFE IN IMPETUS

Dedicated short-term campaigns for measuring energy consumption

(improvement measures from action C1)

Campaign Date		Oxidation ditch					
	Date	DO (mg/L)		TSS (g/L)	CDT (days)		
		Aerator 1	Aerator 2	133 (g/L)	SRT (days)		
2	26-27 Sept. 2017	0.6	0.7	3.2	12		
3	10-11 Oct. 2017	0.6	0.7	3.9	20 (↑)		
4	24-25 Oct. 2017	0.3 (↓)	0.6 (↓)	3.9	12		

LIFE14 ENV/PT/000739 www.life-impetus.eu

Workshop I&Di AdA

Faro NW WWTP energy campaigns LIFE IN IMPETUS

- energy use baseline obtained for assessing the improvement measures for both temperature scenarios (campaign 1 - lower temp; campaign 2 - higher temp)
- higher SRT (20 vs. 12 days campaign 3 vs. 2) may help promoting the PhC control and did not compromise the energy performance
- · lower DO (campaign 4 vs. 2) in the oxidation ditch was associated with lower energy consumption in aeration in kWh/m^3 , though not with total $kWh/kg\ BOD_5$ removed

LIFE14 ENV/PT/000739

Workshop I&Di AdA 09/10/2019

PhC reduction (%) in WWTPs

Beirolas & Faro NW

- APAP & CAF highest concentrations, highly reduced (> 99.9%)
- IBU & NPX the 2nd more abundant (< 1/10 APAP & CAF), highly reduced (> 98%)
- SDZ & fluoxetine & estriol, cortisone, testosterone also occur (in ng/L) and Cout < LOD
- . CFA and the other hormones < LOD in & out
- ERY, SMX, SPD & ATN, MTPL, PPNL, BZF intermediate (~30-80%), variable reductions SRT > 20 d, more reliable ERY reduction
- CBZ & DCF (0.6, 1.5 ug/L median in) are (almost) not removed

LIFE14 ENV/PT/000739 www.life-impetus.eu

Tests at pilot scale. FNW PT2

Tests at pilot scale. FNW PT2

Tests at pilot scale. FNW PT2

Example. carbamazepin

Commercial renewable-source PAC, 2-10 h

- < 10 mg/L PAC reaches 50-70% CBZ reduction, lacks reliability
- 18-25 mg/L PAC, 65-89% CBZ reduction, low reliability
- > 30 mg/L PAC, > 80% CBZ reduction, reliable

20 mg/L new PAC surrogate (commercial non-renewable source PAC) ↓ further 12-21% reduction for CBZ, DCF, SMX

LIFE14 ENV/PT/000739 www.life-impetus.eu Workshop I&Di AdA 09/10/2019

21

PAC dosing at full-scaleFaro NW WWTP

PAC dosing at full-scale Faro NW WWTP

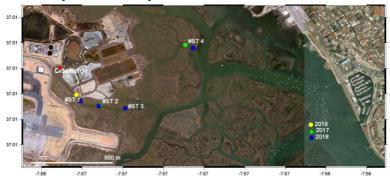
PAC dosing at full-scale Faro NW WWTP

	PAC test 1		PAC test 2		
	Initial PAC overdosing	Continuous PAC dosing	Initial PAC overdosing	Continuous PAC dosing	Commercial
Test starting date	25/03/2019	25/03/2019	02/04/2019	02/04/2019	renewable-source PAC
Test end date	25/03/2019	02/04/2019	02/04/2019	12/04/2019	
PAC dosing duration	3-5 h	8 days	7 h	10 days	
Fresh PAC concentration	-	9-11 mg/L (C1)	-	22-29 mg/L (C2)	
Total mass of PAC dosed	750 kg	360 kg	1140 kg	1125 kg	→ 3,4 ton
Sampling for PhC analysis (day 1 of 24-h composite)	-	28/03 & 01/04/2019	-	08/04 & 11/04/2019	

- Full-scale and pilot results are coherent and corroborate each other
- Overall, both PAC doses achieved similar effluent concentrations for the poorly-not removed PhCs in CAS-WWTPs, but the higher dose yielded always more reliable and usually lower concentrations
- For the recalcitrant CBZ and DCF, disregarding the different time-scales of the 2 scenarios (2.5 years w/ no PAC, 51 data points) vs. 3 weeks w/ PAC (4 data points for each dose), median effluent conc. were 1739 ug/L DCF, 592 ug/L CBZ
 vs. 620 ug/L DCF, 205 ug/L CBZ (C1)
 vs. 501 ug/L DCF, 89 ug/L CBZ (C2)
 65% DCF / 64% CBZ reduction (C1)
 71% DCF / 85% CBZ reduction (C2)
- The new PAC should produce better results, i.e. same PAC dose, higher PhC reduction, or lower dose for similar reduction

LIFE14 ENV/PT/000739 www.life-impetus.eu

Assessment of PhC accumulation in clams in Ria Formosa



Alexandra Cravo - Universidade do Algarve in collaboration with AdA and FFUL/EPAL

LIFE14 ENV/PT/000739 www.life-impetus.eu Workshop I&Di AdA 09/10/2019

25

Clams' exposure experiments

3 field exposure campaigns 2016, 2017 & 2018, along 1 month (Jun/Jul)

- Clams' control
 - Olhão clam bed in 2016 & 2018; Faro clam bed in 2017
- \sim 1-1.5 kg clams exposed at the 4 sites (> 100 clams)
 - #ST1, 200-250 m from the WWTP discharge point
 - #ST2, 400 m
 - #ST3, 600 m
 - #ST4, ~1.5 km

LIFE14 ENV/PT/000739 www.life-impetus.eu

· Environmental characterization

- in situ with multiparametric probe YSI 6820 temperature, salinity, pH, dissolved oxygen
- water samples for determination of SS, chlorophyll a, nutrients, PhCs
- Clams & water samples for PhC analysis at FFUL and EPAL

Clams' exposure experiments

In clams, CAF and APAP...

... were the most bioavailable for clams, regardless the concentrations and dominance of PhCs in the water samples from the exposure sites.

PhC uptake & bioaccumulation depend on:

- ✓ physical-chemical properties of the PhCs/Horm (polarity, solubility)
- √ abiotic factors (temperature, salinity, pH, dissolved oxygen)
- ✓ size and weight, condition index, sexual stage, lipid content, metabolic processes among other variables.

LIFE14 ENV/PT/000739 www.life-impetus.eu Workshop I&Di AdA 09/10/2019

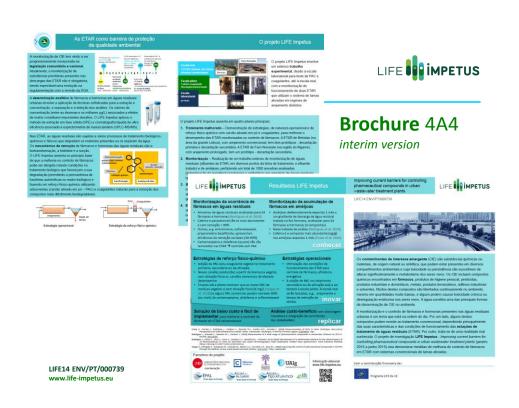
27

FINAL REMARKS

Maria João Rosa

LIFE14 ENV/PT/000739 www.life-impetus.eu Workshop I&Di AdA 09/10/2019

3-level innovation...



- **1. Practices/products** for improved PhC control in 2 **CAS-WWTPs** variants: A2O and oxidation ditch
- 2. Analytical methods for PhC in wastewaters, sludge and clams
- **3.** Cost-benefit analysis strongly supported by long-term data and with an innovative approach integrating the **stakeholders'** input for evaluating intangible cost and benefits

Science technology/new knowledge & innovation/policy & marketable products

LIFE14 ENV/PT/000739

FINAL CONFERENCE

5 December 2019

LNEC Congress Centre

LIFE14 ENV/PT/000739 www.life-impetus.eu

